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Integrated Energy Systems

Modernization of the energy systems is underway
and poses technical and social challenges

Integrated energy systems involves more than just
power grid representation

— Coupled with social networks

* Individual activities and behavior has significant impact on power
system demand and performance

* Changes in demand based on real time pricing
* Adoption of green technologies and impact

— Coupling with different infrastructures and markets

* Transport: Impact of electrical vehicles and V2G
* Communication: Increasing use of communication infrastructure
* Markets; Power markets at different spatio-temporal scales
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Inter-dependent Socially Coupled Networks
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Hypothesis: Next-generation energy systems networks
cannot be effectively designed, analyzed and controlled
in isolation from the social, economic, sensing and control
contexts in which they operate.
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Advances in ICT and Al can help

* Proliferating digital devices that, by ubiquitous
and varied measurements and interaction with
the end users and the underlying energy
system, can provide context-rich information
and services.

* New data analytics and machine learning
techniques can lead to driven first principles
modeling and analytics capabilities to support
the energy systems modernization program.
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Computational Modeling of Integrated
National Energy Systems (MINES)

* Integrated HPC-enabled high-resolution models of synthetic
power networks

— Detailed representations of all the constituent elements of
the electrical grid: generation, transmission, end users

* A modeling framework to represent urban environments and
the embedded social network comprising end users, their
Interactions and movements,

— Realistic demand and response behaviors for consumers,
system operators and individual companies.

* Applications areas include
* study of interdependencies among infrastructures
* vulnerabllities and resilience; electricity market analysis
* renewable and distributed energy generation
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INTEGRATED HPC-ENABLED HIGH-
RESOLUTION MODELS OF SYNTHETIC
POWER NETWORKS
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Data Sources,/Methods Used

* Public reports from different public utility companies and local
governmental agencies

* High level factsheets from Pepco on generation capacity, main
generators, number of substations, total transmission and distribution
line statistics

* QOverall energy consumption
* Streetlamp locations

* Tracing power lines on Google earth
* Identify lines based on overhead clearing, which can be visually identified
by experts
* Domain expertise in connecting different networks
* Use of the power system simulation software, PSSE, to
determine how the grid interconnects within the greater DC
area
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Data Sources

Name Description Type

Electricity generation http://205.254.135.24/state/state-energy- Open Source
rankings.cfm?keyid=33&orderid=1

Electricity Consumption http://www.eia.gov/state/seds/hf.jsp? Open Source
incfile=sep_sum/plain_html/
rank_use_per_cap.html

Distribution network Tracing power lines on Google earth, identify Discussion with
lines based on overhead clearing subject matter
expert, ECE-VT

Transmission network Transmission 2000 data, power system Commercial, ECE-
simulation software to find grid interconnects VT
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Power Network Synthesis

* The transmission and distribution grid geospatially
determined using Google Earth & power system
simulation software, PSSE, to determine how the
grid interconnects within the greater DC area.

* The major transmission lines [(500kV, 230kV,
138kV, and 115kV] bring large amounts of power
into the city from the Baltimore Gas & Electric
(BG&E]), Potomac Electric Power Company (PEPCO],
and Dominion Virginia Power [DVP] systems.

* This power is brought into urban parts of the city

through underground subtransmission &
distribution level circuits (69kV, 34.5kV).

* Almost all the distribution network within the region
are underground, with overhead distribution lines s AN
feeding power to customers further outside the s, R e 7y ool BILD
urban areas. S NG | S, R

P S : S, O
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Synthetic populations, infrastructure,
networks and multi-networks

= A statistically accurate, augmentable
representation of agents [people,
Infrastructure elements, things]

" |n a given area with associated demographic,
physical, social and behavioral attributes

* Anonymity and Privacy preserved

= Synthetic infrastructure and social
networks

= (Capture the interaction between individuals
and infrastructure elements

= Multi-networks capture the interaction
between individuals and infrastructures across

networks
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Constructing synthetic multi-scale social
contact networks at scale

LandScan
Population Time Use Surveys
Counts
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ata sources - general and specific

= Activity locations: =Activity template data
» LandScan "NHTS
. ="ATUS
= |nfoGrid
=Custom surveys
" NAVTEQ/HERE POls =Country similarity
= OSM PQls measure (matching
= \Wikipedia algorithm)
= Residence locations: *Administrative boundaries
. LandS "GADM
andetan *NAVTEQ/HERE
= NAVTEQ/HERE *OSM
= OSM =US Census
sADC Worldmap
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Global Synthetic information: A big data
challenge
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oynthetic Information Viewer (SIV]
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Synthetic Information Viewer (SIV) is a web-based tool used to
visualize synthetic information at a desired level of
disaggregation. It supports synthetic U.S. and 13 other
countries, amounting to 800+ million individuals.

'¥i China (Hong Kong), Es
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DISAGGREGATED MODELS OF
RESIDENTIAL AND COMMERCIAL
ENERGY DEMAND

NETUWORK DYNAMICS
& SIMULATION SCIENCE
AAAAAAAAAA

Biocomplexity Institute



Motivation: Demand Side response

Energy Consumption

Residential
22%

N ,//'
S
~_

Commercial and residential buildings
together account for “40% of energy
consumption.

Energy consumption in these sectors
s, in large part, a function of the
activities of the residents,
customers, and employees of these
buildings.

Consumption may change as
appliances become more efficient or
people begin to take more energy-
saving measures.

This calls for the need for a highly
detailed model of energy
consumption.

nDSSLﬁmﬁ@ﬁﬂrce: US Annual Energy Consumption Outlook - 2012 WVHgi.t].’g’jbdl.
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synthesizing household level dally
energy demands

Data from multiple sources is combined in one
common architecture to generate time varying,
iIndividualistic demand profiles.

Synthetic population- Independent and shared
Demographic information activity information
l Energy Demand

. ) Profile
Mapping characteristics Synthetic household Ac'nv'lty-apphance R
from survey data onto :> level activity sequence :> association and de.mand :> :
synthetic data generation profile generation e Al

. T

ATUS Survey - EIA-RECS Survey - Appliance energy rating
Individual's daily Building characteristics and from EIA and other online
activity schedule appliance information resources
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Residential Energy Consumption: Data

Data Type Description

ATUS Survey Contains activity diaries over a 24 hour period for 13,260
respondents.

EIA-RECS Survey Contains detailed household-level characteristics and

associated energy consumption

Synthetic Generated as Contains household level and individual level demographics
Population described representing Washington-DC area.
Activity Name Appliances Used Energy rating Usage (%)
(watts)
Laundry Washer, Dryer {234, 670} {.45, .55}
Dish washing Dishwasher 1200 1
Cooking (mid-day) Microwave 500 .5
Watching TV Television 220 1
Computer usage Compute 160 1
Cooking (morning) Stove, Coffee maker, 856 {.35, .05, .5, .05, 0, .
Microwave, Toaster Oven, 05}
Blender
Cooking (night) Stove, Coffee maker, 940 {.35, .05, .45, .05, 05, .
Microwave, Toaster Oven, 05}
Blender

i i
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Modeling Workflow

________________ P
[ Synthetlc Base , .Acﬁve appliancel | Region
' Population | Lenergy ratings ' L information

/ [Calculate active ]
energy use
Compute total energy
Match each synthetic Match each synthetic Resolve Activity Create
person to an ATUS » household to a RECS » shared Time of day ‘
survey respondent household activities Region output files
County
Calculate passive
Energy consumption [ energy use ) 1”777 7\ Internally developed/
for a household L ) assembled datasets
Third party datasets
2010 ATUS Data 2009 RECS Data | Passive appliance 1 Weather Data Internal processes
Files Files { energy ratings :

Internal data transfer

T —
—
- External data transfer

Fig. 2. Modeling framework to generate energy demand model for residential buildings
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Residential Energy Consumption

We further break down the
activities that take place at
home.

We categorize the energy
consumption of a residential
building into two major
groups: active energy
consumption varies as a
function of the activities of the
household members. Passive
energy consumption is mainly
due to temperature
regulation, refrigeration, etc.
and does not vary with
individual activities.
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Usage pattern in a typical house
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Validating the model
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Residential Energy Consumption: Results

Laundry/Washing
0.012 Py

ATUS Data ™=

0.01 b .......
. el Data

0.008 F-i VY ,
0.006 i T ATNA ) N\

omos | VAR

0.002 i

o b

00:00 04:00 08:00 12:00 16:00 20:00

Time of Day (in hours)

Cooking

0.07 [rrrrrr—r——r————————r——
0.06 i ATUS

0.05
0.04

005 W """"" o """""
0.02 e wl »‘// --------- e

Fraction of households performing the activity

B e s
N P A T S S
00:00 04:00 08:00 12:00 16:00 20:00

Time of Day (in hours)

0.025
0.02
0.015
0.01
0.005
0

Dish-Washing

'!"'I"'I"'I"'I"'
: ATUS Dat
_ModelDa

00:00 04:00 08:00 12:00 16:00 20:00

0.025
0.02
0.015
0.01
0.005
0

Time of Day (in hours)

Household-Cleaning

N B B B N
' ATUS Data ™=

00:00 04:00 08:00 12:00 16:00 20:00

Time of Day (in hours)

'ch.

itute



Section

APPLICATIONS
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Applications of synthetic demand modeling

* Placing energy storage devices to support
bidirectional flow and net metering

* \What levels of renewable penetration will make

It necessary to update the electrical
Infrastructure?

* How to nudge consumers to move load from
neak hours to off-peak hours?

* How can we improve grid resiliency?

* How can we protect the grid from cascading
faillures within and across infrastructures?

NETWORK DYNAMICS o
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Case Study: Energy Demand Scaling

E Active - Energy Demand Scaling

5500 —r T
5 Original Demand ==
Scaled Demand

5000

4500

4000

EActive in KWh

3500

oo e e
06:00 08:00 10:00 12:00 14:00 16:00

Time of Day (in hours)

* \Ve selected about 20% of households and shifted their
cleaning and washing activities from peak to off peak time
periods

* \We saved about 4.5 M\Wh of energy at peak time
nDSSL?E#’n"uﬁHEH%”AL%%E W Virginigech.
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2. CASCADING FAILURES IN
POWER NETWORKS
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Power networks, cascades and resiliency

= Development of dedicated
theory and analysis for power
networks.

= Scenarios:
= 5, NPS1
= S.: A coordinated, targeted
attack on the major
generating substations Sub-
scenarios:

= (,: protection system works
perfectly

= (C,: protection system within
a certain distance of the
attack is compromised. Cascade

Distance

Physical

Recovery
Time

NETWORH DYNAMICS o
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Broad Results

1. Scenario 1 is unlikely to cause large cascading failure of
the grid, highlighting the role of protection devices and
the local structure of the power grid;

2. Scenario 2 can lead to widespread cascading failures
even though the physical damage to the infrastructure is
minimal;

3. For both scenarios, using smart devices like phasor
measurement units (PMUs] already present in the field
and placing relays at strategic locations inside EMP-
proof boxes, can considerably reduce the damage.

NETWORK DYNAMICS
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Broad insights

The physical damage to electrical infrastructure and
corresponding outage probabilities depend on

* urban geography, structure and geography of the power

iInfrastructure, location of impact and the prevailing weather
patterns.

Substantial iImmediate effects of IND

* Might not be possible to restore power for months because
of resulting environmental contamination, and lack of spare
capacity and components

Islanding becomes important

Demonstrates need for developing realistic and integrated
representations of the underlying interdependent system

NETWORK DYNAMICS
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Key Factors Considered

* (utage region and to what extent?

* How many control centers, substations, transformers have been
destroyed, and impact of cascading failures?

* Resources avallable for restoration, e.g., spare transformers

* Secondary effects: impact on communication, health,
transportation

* Number and location of control centers, transformers,
generating units in the DC region.

* Distribution network

* Total peak time load, generation capacity of the DC region

NETWORK DYNAMICS .
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Dynamic Analysis on synthetic power
system

* Dynamic analysis by simulation of tripping
* Steady state model reduction using PSSE

* Transient analysis of the eastern grid ([PEPCO
service area)

* System response emulation for 100 sec

* Final frequency at which local grid settled was found
to be lower than the base frequency

NETWORK DYNAMICS
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Estimated Long Term Power Outage Area

* Probability of damage to individual substations Aggregated outage area

Il /@ [High/medium/low: probability of damage

* Long-term outage area devised by geographically relating the location of substations in

the city with the blast damage zones.
* Loss of a substation has a much more widespread impact on power delivery to the

customers.

& SIMULATION SCIENCE
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Estimated Cost of Damage to Electrical
Infrastructure

e Factors considered in cost assessment
* Estimate of substation damage costs
e Estimate of distribution line costs

* Cost of damaged substations is $96.4m, and
distribution system including underground network is

$705m.

* Total loss in load is 889.1 MW. At avg. price of $93
per MWh, value of energy lost is $27.78m

NETWORK DYNAMICS
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Section

3. SMART CITIES APPLICATION



Electric vehicle (EV]) charging station
placement

* Transportation infrastructure contributes
26% of carbon emissions in the US

* \Well accepted approach for reducing
emissions: adoption of EVs and hybrid
vehicles

* Challenge: lIimited cruising distance

— Need to provide charging stations

* \Where do we deploy charging infrastructure?

NETWORK DYNAMICS o
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EV charging infrastructure -

Different kinds of charging stations:

— Level O: charging at home
* 4.5 miles of range per hour of charge [lean Leaf]
22 hours for full charge K

— Level 1: 240V supply
* 26 mile of range per hour
~ $2000

— Level 2: DC fast charging

* 40 miles of range per 10 min
~ $100,000

* \Where should different kinds of charging
stations be installed?

NETWORK DYNAMICS
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EV Charging Station Problem

* User demand
— Relatively small fraction currently has EVs [<2%)]
— Might grow to 10% in a few years

— Need to be able to serve current users and growing
demands

* Typical scenario
— Users park EV and leave it for charging
— Should have enough charge to allow for next trip
* (Objectives of interest:
— Distance to charging station from activity location
— Alternative transportation from charging station
— Activity duration needs to be taken into account

NETWORK DYNAMICS
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Formalizing the problem
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A case study

Population

Over 1.6 million

Hactivities per person

~5

Population with EVs

~0.2% of the population

#potential locations for
charging stations

~3700

* Currently low adoption rate

* Specific demographics from literature
— Urban trendsetters (18-33), high income levels
— Middle-aged families with high income
— Seniors (B0-75] with high income

* In general, can vary adoption rates and other

demographics

NETUWORK DYNAMICS
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summary

* Synthetic and detailed representation of
Integrated system can be useful in addressing
Important problems arising in designing smart
grids

* |[CT Technologies including Big-data and machine
learning techniques can be developed to provide
new insights and solutions to emerging problems
arising in the design and deployment of next
generation energy systems
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National planning scenario

e Unannounced 10 kt
detonation of an

Improvised Nuclear
Device (IND)

e 16t and K Street,
Washington DC

e 11:15am May 15,
2006
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Modernizing today’s energy systems

* Energy system modernization poses very large
scale, evolving and interdependent scientific,
policy and design challenges that test the limits
of current understanding.

* A national effort is underway to architect and
build the next generation power grid ['smart
grid’), harness renewable energy sources and
reduce its carbon footprint while expanding
generation and distribution capacities
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Commercial Energy Consumption: Results

NDSSL

Energy Demand (in Kwh)

2100
2095
2090
2085
2080
2075
2070

280
275

Retail Buildings

00:00 04:00 08:00 12:00 16:00

Time of Day (1n hours)

School

Hopelsgpergy demand == .

20:00

270
265

260
255

250
245

240

00:00 04:00 08:00 12:00 16:00

fnLIwuinvimnnvo

& SIMULATION SCIENCE

Time of Day (in hours)

20:00

5625

56245

5624

56235

5623
00:00 04:00 08:00

1860
1859
1858
1857
1856
1855
1854
1853
1852
1851
1850

Other Building Types

P WD, W T S S S——

Hourly energy demand =

12:00 16:00 20:00

Time of Day (in hours)

Office

nergy demand = -=

.......

.......

00:00 04:00 08:00 12:00 16:00 20:00

Time of Day (in hours)

W VirginiaTech.

Biocomplexity Institute



