
Informatics and Analytics for Integrated 
Energy Systems 

Madhav Marathe  
Email: mmarathe@vbi.vt.edu 

Phone: 540 808 3292 
Network Dynamics and Simulation Science Laboratory (NDSSL) 

Biocomplexity Institute of Virginia Tech 
& Dept. of Computer Science 

Virginia Tech 
 

NDSSL-TR-2016-072 
NDSSL: http://bi.vt.edu/ndssl 

Biocomplexity Institute: http://bi.vt.edu 
 
 



Acknowledgements 

•  Support from NSF, NIH, DTRA, IARPA, DOE 

•  Work presented is done jointly NDSSL team 

and with Anil Vullikanti, Eric Nordberg, Chris 

Barrett, Anamitra Pal, Achla Marathe, S.S. 

Ravi Arun Phadke, James Thorp, Virgilio 

Centeno, Stephen Eubank, Mina Youssef, 

Chetan Mishra, Henning Mortveit, Cansin 

Yaman Evrenosoğlu 

Thanks to members of the Network 

Dynamics and Simulation Science 

Laboratory, ECE@VT, VBI  ASU, and 

others. 



Integrated Energy Systems 

•  Modernization of the energy systems is underway 
and poses technical and social challenges 

•  Integrated energy systems involves more than just 
power grid representation 
– Coupled with social networks 

•  Individual activities and behavior has significant impact on power 
system demand and performance 

•  Changes in demand based on real time pricing 
•  Adoption of green technologies and impact 

– Coupling with different infrastructures and markets 
•  Transport: Impact of electrical vehicles and V2G 
•  Communication: Increasing use of communication infrastructure 
•  Markets; Power markets at different spatio-temporal scales 



Dun	
  &	
  
Bradstreet,	
  
land-­‐use	
  data	
  

Navteq	
  
Open	
  Street	
  

Maps	
  

Towermaps,	
  
SME	
  

Pepco,	
  
Google	
  earth,	
  	
  

SME	
  

wife	
  of	
  son	
  of	
  

	
  mul4-­‐modal	
  transport	
  
network	
  

Office	
  mate	
  

Drop	
  to	
  	
  
school	
  

Shares	
  ride	
  

Pick	
  up	
  from	
  mall	
  

Calls	
  at	
  work	
  

Texts	
  in	
  the	
  evening	
  

Watch	
  TV	
  together	
  

Share	
  office	
  

	
  wireless	
  comm	
  	
  
network	
  

Inter-dependent Socially Coupled Networks 

Power	
  transmission+	
  
distribu4on	
  network	
  

In
fr
as
tr
uc
tu
re
	
  N
et
w
or
ks
	
  

So
ci
al
	
  N
et
w
or
ks
	
  

Cook	
  together	
  



Hypothesis:	
  Next-­‐genera4on	
  energy	
  systems	
  networks	
  
cannot	
  be	
  effec$vely	
  designed,	
  analyzed	
  and	
  controlled	
  
in	
  isola4on	
  from	
  the	
  social,	
  economic,	
  sensing	
  and	
  control	
  
contexts	
  in	
  which	
  they	
  operate.	
  	
  



Advances in ICT and AI can help 

•  Proliferating digital devices that, by ubiquitous 
and varied measurements and interaction with 
the end users and the underlying energy 
system, can provide context-rich information 
and services.  

•  New data analytics and machine learning 
techniques can lead to driven first principles 
modeling and analytics capabilities to support 
the energy systems modernization program. 



Computational Modeling of Integrated 
National Energy Systems (MINES) 

•  Integrated HPC-enabled high-resolution models of synthetic 
power networks  
–  Detailed representations of all the constituent elements of 

the electrical grid: generation, transmission, end users  
•  A modeling framework to represent urban environments and 

the embedded social network comprising end users, their 
interactions and movements,  
–  Realistic demand and response behaviors for consumers, 

system operators and individual companies.  
•  Applications areas include 

•  study of interdependencies among infrastructures 
•  vulnerabilities and resilience; electricity market analysis 
•  renewable and distributed energy generation 



INTEGRATED HPC-ENABLED HIGH-
RESOLUTION MODELS OF SYNTHETIC 
POWER NETWORKS  
 

Section   



Data Sources/Methods Used 
•  Public reports from different public utility companies and local 

governmental agencies 
•  High level factsheets from Pepco on generation capacity, main 

generators, number of substations, total transmission and distribution 
line statistics 

•  Overall energy consumption 
•  Streetlamp locations 

•  Tracing power lines on Google earth 
•  Identify lines based on overhead clearing, which can be visually identified 

by experts 
•  Domain expertise in connecting different networks 

•  Use of the power system simulation software, PSSE, to 
determine how the grid interconnects within the greater DC 
area 



Data Sources 
Name	
   Descrip1on	
   Type	
  

Electricity	
  generaEon	
   hFp://205.254.135.24/state/state-­‐energy-­‐
rankings.cfm?keyid=33&orderid=1	
  

Open	
  Source	
  

Electricity	
  ConsumpEon	
   hFp://www.eia.gov/state/seds/hf.jsp?
incfile=sep_sum/plain_html/
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Power Network Synthesis 

•  The transmission and distribution grid geospatially 
determined using Google Earth & power system 
simulation software, PSSE, to determine how the 
grid interconnects within the greater DC area.   

•  The major transmission lines (500kV, 230kV, 
138kV, and 115kV) bring large amounts of power 
into the city from the Baltimore Gas & Electric 
(BG&E), Potomac Electric Power Company (PEPCO), 
and Dominion Virginia Power (DVP) systems.   

•  This power is brought into urban parts of the city 
through underground subtransmission & 
distribution level circuits (69kV, 34.5kV).   

•  Almost all the distribution network within the region 
are underground, with overhead distribution lines 
feeding power to customers further outside the 
urban areas.  



Incorporating Substation Locations 

•  Identifying specific 
substations using openly 
available information 

•  Provides estimate as to 
how the power is 
brought into the city for 
consumption & 

•   Where the major load 
centers and tie lines are 
located. 
 

 



SYNTHETIC SOCIAL SYSTEMS 
Section   



Synthetic populations, infrastructure,  
networks and multi-networks 

§  A statistically accurate, augmentable 
representation of agents (people, 
infrastructure elements, things)   
§  in a given area with associated demographic, 

physical, social and behavioral attributes 

§  Anonymity and Privacy preserved 

§  Synthetic infrastructure and social 
networks  
§  Capture the interaction between individuals 

and infrastructure elements 

§  Multi-networks capture the interaction 
between individuals and infrastructures across 
networks 



Constructing synthetic multi-scale social 
contact  networks at scale 
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§  Activity locations: 

§  LandScan 

§  D&B 

§  InfoGrid 

§  NAVTEQ/HERE POIs 

§  OSM POIs 

§  Wikipedia 

§  Residence locations: 

§  LandScan 

§  NAVTEQ/HERE 

§  OSM 

Data sources – general and specific 

§ Ac1vity	
  template	
  data	
  
§ NHTS	
  
§ MTUS	
  
§ ATUS	
  
§ Custom	
  surveys	
  
§ Country	
  similarity	
  
measure	
  (matching	
  
algorithm)	
  

§ Administra1ve	
  boundaries	
  
§ GADM	
  
§ NAVTEQ/HERE	
  
§ OSM	
  
§ US	
  Census	
  
§ ADC	
  Worldmap	
  



Global Synthetic information: A big data 
challenge 
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people 

Storage 
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Files in which 
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First data driven global synthetic populations 
and proximity networks 



Synthetic Information Viewer (SIV) 

Synthetic Information Viewer (SIV) is a web-based tool used to 
visualize synthetic information at a desired level of 

disaggregation. It supports synthetic U.S. and 13 other 
countries, amounting to 800+ million individuals.




DISAGGREGATED MODELS OF 
RESIDENTIAL AND COMMERCIAL 
ENERGY DEMAND 

Section   



Motivation: Demand Side response 

•  Commercial and residential buildings 
together account for ~40% of energy 
consumption. 

•  Energy consumption in these sectors 
is, in large part, a function of the 
activities of  the residents, 
customers, and employees of these 
buildings. 

•  Consumption may change as 
appliances become more efficient or 
people begin to take more energy-
saving measures. 

•  This calls for the need for a highly 
detailed model of energy 
consumption. 

20 Figure Source: US Annual Energy Consumption Outlook - 2012 
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Synthesizing household level daily 
energy demands 

Data from multiple sources is combined in one 
common architecture to generate time varying, 
individualistic demand profiles. 
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Residential Energy Consumption: Data 
Data	
   Type	
   Descrip1on	
  

ATUS	
   Survey	
   Contains	
  acEvity	
  diaries	
  over	
  a	
  24	
  hour	
  period	
  for	
  13,260	
  
respondents.	
  	
  

EIA-­‐RECS	
   Survey	
  	
   Contains	
  detailed	
  household-­‐level	
  characterisEcs	
  and	
  
associated	
  energy	
  consumpEon	
  

SyntheEc	
  
PopulaEon	
  

Generated	
  as	
  
described	
  

Contains	
  household	
  level	
  and	
  individual	
  level	
  demographics	
  
represenEng	
  Washington-­‐DC	
  area.	
  	
  

Ac1vity	
  Name	
   Appliances	
  Used	
   Energy	
  ra1ng	
  
(wa?s)	
  

Usage	
  (%)	
  

Laundry	
   Washer,	
  Dryer	
   {234,	
  670}	
   {.45,	
  .55}	
  

Dish	
  washing	
   Dishwasher	
   1200	
   1	
  

Cooking	
  (mid-­‐day)	
   Microwave	
   500	
   .5	
  

Watching	
  TV	
   Television	
   220	
   1	
  

Computer	
  usage	
   Compute	
   160	
   1	
  

Cooking	
  (morning)	
   Stove,	
  Coffee	
  maker,	
  
Microwave,	
  Toaster	
  Oven,	
  
Blender	
  

856	
   {.35,	
  .05,	
  .5,	
  .05,	
  0,	
  .
05}	
  

Cooking	
  (night)	
   Stove,	
  Coffee	
  maker,	
  
Microwave,	
  Toaster	
  Oven,	
  
Blender	
  

940	
   {.35,	
  .05,	
  .45,	
  .05,	
  05,	
  .
05}	
  
	
  



Modeling Workflow 



Residential Energy Consumption 

We further break down the 
activities that take place at 
home. 
 
We categorize the energy 
consumption of a residential 
building into two major 
groups: active energy 
consumption varies as a 
function of the activities of the 
household members. Passive 
energy consumption is mainly 
due to temperature 
regulation, refrigeration, etc. 
and does not vary with 
individual activities. 
  

Total	
  Energy	
  
Demand	
  

EAcEve	
  
(Laundry,	
  Watching	
  

TV,	
  Cleaning)	
  

Shared	
   Individual	
  

EPassive	
  
(Hot	
  water	
  usage,	
  	
  
Space	
  heaEng)	
  

•  Laundry 
•  Washing dishes 
•  Watching TV* 
•  Cooking 
•  Cleaning 

•  Computer use 
•  Checking email 



Usage pattern in a typical house 



Validating the model 



Residential Energy Consumption: Results 



APPLICATIONS 
Section   



Applications of synthetic demand modeling 

•  Placing energy storage devices to support 
bidirectional flow and net metering 

•  What levels of renewable penetration will make 
it necessary to update the electrical 
infrastructure? 

•  How to nudge consumers to move load from 
peak hours to off-peak hours? 

•  How can we improve grid resiliency? 
•  How can we protect the grid from cascading 

failures within and across infrastructures? 



Case Study: Energy Demand Scaling 

•  We selected about 20% of households and shifted their 
cleaning and washing activities from peak to off peak time 
periods 

•  We saved about 4.5 MWh of energy at peak time 

30 



2. CASCADING FAILURES IN 
POWER NETWORKS 

Section   



Power networks, cascades and resiliency 

§  Development of dedicated 
theory and analysis for power 
networks. 

§  Scenarios: 
§  S1: NPS-1 
§  S2: A coordinated, targeted 

attack on the major 
generating substations Sub-
scenarios: 

§  C1: protection system works 
perfectly 

§  C2: protection system within 
a certain distance of the 
attack is compromised.  

32



Broad Results 

 
1.  Scenario 1 is unlikely to cause large cascading failure of 

the grid, highlighting the role of protection devices and 
the local structure of the power grid;  

2.  Scenario 2 can lead to widespread cascading failures 
even though the physical damage to the infrastructure is 
minimal;  

3.  For both scenarios, using smart devices like phasor 
measurement units (PMUs) already present in the field 
and placing relays at strategic locations inside EMP-
proof boxes, can considerably reduce the damage.  

33



Broad insights 

•  The physical damage to electrical infrastructure and 
corresponding outage probabilities depend on  
•  urban geography, structure and geography of the power 

infrastructure, location of impact and the prevailing weather 
patterns. 

•  Substantial immediate effects of IND  
•  Might not be possible to restore power for months because 

of resulting environmental contamination, and lack of spare 
capacity and components 

•  Islanding becomes important 
•  Demonstrates need for developing realistic and integrated 

representations of the underlying interdependent system 



Key Factors Considered 

 

•   Outage region  and to what extent? 
•  How many control centers, substations, transformers have been 

destroyed, and impact of cascading failures? 
•  Resources available for restoration, e.g., spare transformers 
•  Secondary effects: impact on communication, health, 

transportation 
•  Number and location of control centers, transformers, 

generating units in the DC region. 
•  Distribution network 
•  Total peak time load, generation capacity of the DC region 
 



Dynamic Analysis on synthetic power 
system 

•  Dynamic analysis by simulation of tripping 
•  Steady state model reduction  using PSSE 

•  Transient analysis of the eastern grid (PEPCO 
service area) 

•  System response emulation for 100 sec 
•  Final frequency at which local grid settled was found 

to be lower than the base frequency 



Estimated Long Term Power Outage Area 

•  Probability	
  of	
  damage	
  to	
  individual	
  substations	
  
	
  	
  
•  	
  	
  	
  /	
  	
  	
  	
  /	
  	
  	
  	
  	
  :	
  High/medium/low:	
  probability	
  of	
  damage	
  

Aggregated	
  	
  outage	
  area	
  

•  Long-­‐term	
  outage	
  area	
  devised	
  by	
  geographically	
  relating	
  the	
  location	
  of	
  substations	
  in	
  
the	
  city	
  with	
  the	
  blast	
  damage	
  zones.	
  	
  	
  

•  Loss	
  of	
  a	
  substation	
  has	
  a	
  much	
  more	
  widespread	
  impact	
  on	
  power	
  delivery	
  to	
  the	
  
customers.	
  	
  



Estimated Cost of Damage to Electrical 
Infrastructure 

•  Factors considered in cost assessment 

•  Estimate of substation damage costs 

•  Estimate of distribution line costs 

•  Cost of damaged substations is $96.4m, and 
distribution system including underground network is 
$705m.  

•  Total loss in load is 889.1 MW. At avg. price of $93 
per MWh, value of energy lost is $27.78m 



3. SMART CITIES APPLICATION 
Section   



Electric vehicle (EV) charging station 
placement 

•  Transportation infrastructure contributes 
26% of carbon emissions in the US 

•  Well accepted approach for reducing 
emissions: adoption of EVs and hybrid 
vehicles  

•  Challenge: limited cruising distance 
– Need to provide charging stations 

•  Where do we deploy charging infrastructure? 



EV charging infrastructure 
•  Different kinds of charging stations: 

–  Level 0: charging at home 
•  4.5 miles of range per hour of charge (Nisan Leaf) 
•  22 hours for full charge 

–  Level 1: 240V supply 
•  26 mile of range per hour 
•  ≈ $2000 

–  Level 2: DC fast charging 
•  40 miles of range per 10 min 
•  ≈ $100,000 

•  Where should different kinds of charging 
stations be installed? 



EV Charging Station Problem 
•  User demand 

– Relatively small fraction currently has EVs (<2%) 
– Might grow to 10% in a few years 
– Need to be able to serve current users and growing 

demands 
•  Typical scenario 

– Users park EV and leave it for charging 
–  Should have enough charge to allow for next trip 

•  Objectives of interest: 
– Distance to charging station from activity location 
– Alternative transportation from charging station 
– Activity duration needs to be taken into account 



Formalizing the problem 

For each potential location 
•  Fraction of battery level 

that gets charged for 
EV  

•  Depends on activity 
duration 

Solve as a facility location problem 



A case study 

Popula1on Over	
  1.6	
  million 
#acEviEes	
  per	
  person ~5 
PopulaEon	
  with	
  EVs ~0.2%	
  of	
  the	
  populaEon 
#potenEal	
  locaEons	
  for	
  
charging	
  staEons 

~3700 

•  Currently low adoption rate 
•  Specific demographics from literature 

–  Urban trendsetters (18-35), high income levels 
–  Middle-aged families with high income 
–  Seniors (60-75) with high income 

•  In general, can vary adoption rates and other 
demographics 



Results 

Charging	
  staEons	
  of	
  each	
  type	
  vs	
  D	
  	
  

DistribuEon	
  of	
  charging	
  staEons	
  for	
  D=1km	
  

Frequencies	
  of	
  combinaEons	
  of	
  
charging	
  staEons	
  used	
  by	
  each	
  EV	
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Summary 
•  Synthetic and detailed representation of 

integrated system can be useful in addressing 
important problems arising in designing smart 
grids 

•  ICT Technologies including Big-data and machine 
learning techniques can be developed to provide 
new insights and solutions to emerging problems 
arising in the design and deployment of next 
generation energy systems  
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ADDITIONAL SLIDES 
Section   



National planning scenario 1  

  
•  Unannounced	
  10	
  kt	
  

detonation	
  of	
  an	
  
Improvised	
  Nuclear	
  
Device	
  (IND)	
  

•  16th	
  and	
  K	
  Street,	
  
Washington	
  DC	
  

	
  
•  11:15am	
  May	
  15th,	
  

2006	
  



Modernizing today’s energy systems 

•  Energy system modernization poses very large 
scale, evolving and interdependent scientific, 
policy and design challenges that test the limits 
of current understanding. 

•  A national effort is underway to architect and 
build the next generation power grid (“smart 
grid”), harness renewable energy sources and 
reduce its carbon footprint while expanding 
generation and distribution capacities 



Commercial Energy Consumption: Results 


